

Center of Liver, Digestive and Metabolic Diseases

Dept of Vascular Medicine

Targeting cholesterol excretion

Lily Jakulj, MD

Reverse cholesterol transport

1. Plasma HDL-c determines RCT

2. Obligate role of bile in RCT

1. Plasma HDL-c and RCT

- Biliary and fecal cholesterol excretion not impaired in ABCA1-/- mice ^{1,2}
- rHDL increased plasma HDL-c and centripetal flux to the liver, but not FSE in ABCA1-/- mice ³
- Upregulation of individual steps in RCT did not affect FSE in normolipidemic mice⁴
- Human FSE studies conflicting

- 1. Groen, JCI 2001
- 2. Xie, JLR 2009
- 3. Jolley, JLR 1998
- 4. Alam, JBC 2001

Impaired *in vivo* tissue cholesterol efflux in subjects with genetically low HDL-c

Holleboom, Jakulj, Groen, Stroes, unpublished

FSE is equal in low HDL-carriers and controls

Holleboom, Jakulj, Groen, Stroes, unpublished

1. Plasma HDL-c determines RCT

- Plasma HDL-c does not adequately reflect RCT in mice and humans with isolated low HDL-c
- Despite impaired TCE in carriers of mutations in *APOA1* or *ABCA1*, compensating mechanisms exist
- Fecal sterol excretion, the obligate endpoint of RCT may depend on alternative (non-HDL?) pathways

2. Obligate role of bile in RCT

Yu, PNAS 2002

Non-biliary cholesterol excretion

 Increased FNS loss in dogs with complete biliary diversion and cholesterol free diet (Pertsemlidis, JCI 1973)

- Genetically modified mice with impaired biliary secretion:
 - C7a hydroxylase -/-
 - Abcb4-/-
 - Hepatic NPC1L1 +++
 - Hepatic ACAT2 -/-

(Schwarz, JLR 1998)

(Kruit, Gastroenterology 2005)

(Temel, JCI 2007)

(Brown, JBC 2008)

NPC1L1 Liver-Tg mice

> 90% reduction of biliary cholesterol secretion

Normal FNS excretion

Normal intestinal cholesterol absorption

Similar plasma cholesterol levels as in wildtype

Temel, JCI 2007

Intestinal perfusion experiments

Van der Velde, Groen, Gastroenterology 2007

Trans-intestinal cholesterol excretion

Quantification of fractional and absolute contributions to FNS loss in vivo in mice +/– LXR agonist

van der Veen, Groen, JBC 2009

LXR-induced increase in FNS loss is largely due to TICE stimulation

van der Veen, Groen, JBC 2009

Stimulation of TICE in mouse models

1. Van der Velde, Groen, Gastroenterology 2007

2. Van der Velde, Groen, Am J Physiol Gastrointest Liver Physiol 2008

3. Vrins, Groen, JLR 2009 4. van der Veen, Groen, JBC 2009

Is TICE an anti-atherogenic mechanism?

Macrophage-specific RCT assay

deGoma, JACC 2008

Non-biliary Φ-RCT in liver-NPC1L1++ mice

Obligate biliary Φ-RCT in Abcb4 -/- mice

Underlying mechanisms?

Van der Velde, World J Gastroenterol 2010

Van der Velde, Brufau, Groen, Curr Opin Lipidol 2008

TICE in humans?

- Fecal sterols of non-dietary origin present in patients with complete biliary obstruction¹
- Bile diversion in hoFH patients produced a 6-8-fold increase in GI sterol output²
- Human intestinal perfusion studies: TICE estimated as ~44% of total FNS loss³

¹ Cheng, Proc Soc Exp Biol Med 1959

² Deckelbaum, NEJM 1977 ³ Simmonds, JCI 1967

Human TICE studies

- Proof-of-concept in patients with total biliary obstruction
- In vivo stable isotope study in subjects with intact enterohepatic cycle

Proof-of-concept: bile-diverted subjects

Human in vivo stable isotope study

Male subjects, n	15
Age, years	61.7 ± 3.4
BMI, kg/m ²	25.7 ± 2.5
Total cholesterol, mmol/l	5.59 ± 0.65
LDL-cholesterol, mmol/l	3.74 ± 0.50
HDL-cholesterol, mmol/l	1.32 ± 0.27
Triglycerides, mmol/l	1.01 [0.66 – 2.61]

Jakulj, Stroes, Groen, unpublished

Human in vivo flux study

TICE ± 30% of FNS loss in humans

Jakulj, Stroes, Groen, unpublished

- Non-biliary cholesterol excretion contributes to plasma cholesterol elimination in mice and men
- TICE might serve as an attractive target to improve RCT
- Focus on underlying molecular mechanisms and possibilities to stimulate TICE in humans

Acknowledgements

umcg

am C

- A.K. Groen
- T.H. van Dijk
- T. Boer
- R. Boverhof
- F. Stellaard
- G. Brufau

- E.S.G. Stroes
- A.G. Holleboom
- R. Franssen
- K.P. van Lienden
- E.A.J. Rauws
- K.A.C. Booij / D.J. Gouma

